DROUGHT AND CLIMATE CHANGE IMPACTS ON THE WATER QUALITY OF THE RIVER THAMES

G. Bussi, P. Whitehead, B. Guillod
School of Geography and the Environment, University of Oxford
The problem: pollution in the Thames

- **Nitrogen**: high nitrate content due to intensive agriculture and fertiliser use

- **Phosphorus**: from effluent (36 STWs, ~ 3M PE) and from fertilisers

- Phytoplankton: algal blooms in summer due to high temperature, radiation and high nutrient availability

- Others: suspended solids, organics, pathogens, microplastics…
The problem: drought & climate change

- **Drought:**
 - Low flows = low effluent dilution capacity (P), high residence times (phytoplankton)
 - When water availability is low, water quality becomes a concern for water supply

- **Climate change:**
 - Increase in temperature
 - Dryer summers and wetter winters
 - Low flows likely to decrease
The problem: drought & climate change

- **weather@home (w@h) climate data**: climate model run on volunteers’ computers around the world
 - Baseline: 1975-2004 ~ 100 time series
 - Near future: 2020-2049 ~ 100 time series
 - Far future: 2070-2099 ~ 100 time series
Case-study: the River Thames

- ~10,000 km²
- 158 km (non-tidal)
- Drinking water supply for ~14M
- Prec.: 730 mm/year
- Temp.: 11°C (4.6-16.4)
- Arable land: 39%
- Urban land: up to 30% in the lowlands
Nitrogen: drought impacts

- During drought:
 - reduced agricultural runoff and drainage
 - increased denitrification due to longer water residence times

- During drought termination (or drought recovery):
 - nitrate flushed from the catchment soils

Thames at Farmoor

Flow: INCA model
Nitrate: Env. Agency
Nitrogen: climate change

- Decrease in nitrate concentration:
 - Less runoff: lower export of nitrogen from soils to the rivers
 - Increased plant uptake (?)
 - Lower flows expected in summer: lower nitrate concentration due to increased denitrification (longer residence times)

- But...increase in drought termination nitrate peaks:
 - Increase in winter precipitation: larger export of nitrogen from soils
 - Increase in torrentiality and floods: more nitrogen “flushed” from soils after droughts
Nitrogen: methodology

Climate model data:
100 x Baseline (1975-2004)
100 x Near future (2020-2049)
100 x Far future (2070-2099)

Calibrated INCA model: flow and nitrogen predictions

Results analysis: drought impact assessment under a changing climate
Nitrogen: model calibration

- Monte Carlo-based sensitivity analysis on the model parameters
- 20 “behavioural” model selected (i.e., the best models)
Drought definition

- Parry et al, 2016, Progress in Physical Geography (CEH and Uni. Loughborough)
Nitrogen

- INCA model driven by weather@home data
 - Monthly flow vs nitrate concentration relationship
Nitrogen

- INCA model driven by weather@home data
 - Monthly flow and nitrate values depending on the drought phase
 - Increase in NO$_3$ concentration from drought to drought termination ~ +17%
Nitrogen

- INCA model driven by weather@home data
 - Climate change impact on flow
Nitrogen

- INCA model driven by weather@home data
 - Climate change impact on nitrate concentration
Nitrogen

- Climate change impact on drought termination nitrate concentration:
 - 1975-2004: 8.44 (±σ: 7.11-9.76) mg/l
 - 2020-2049: 8.19 (±σ: 6.77-9.61) mg/l
 - 2070-2099: 7.77 (±σ: 6.08-9.47) mg/l

- Climate change impact on drought to drought termination nitrate concentration increase:
 - 1975-2004: +17%
 - 2020-2049: +17%
 - 2070-2099: +21%
Phosphorus: drought and climate change impacts

- Predominantly point sources (STWs)
- Droughts cause lack of dilution and increase in P concentration
- Climate change is expected to cause lower summer flows

Data from the Env. Agency

Thames at Teddington
Phosphorus: methodology

Climate model data:
100 x Baseline (1975-2004)
100 x Near future (2020-2049)
100 x Far future (2070-2099)

Calibrated INCA model: flow, sediment and phosphorus predictions

Results analysis: drought impact assessment under a changing climate
Phosphorus: model calibration

- Monte Carlo-based sensitivity analysis on the model parameters
- 20 “behavioural” model selected (i.e., the best models)
Phosphorus: results

- INCA model driven by weather@home data
 - Phosphorus control during droughts: flow

Tipping point: \(p(Q_{\text{month}}) \approx 99\% \)
Phosphorus: results

- INCA model driven by weather@home data
 - Climate change impact
Phosphorus: results

- Tipping point flow:
 - 1975-2004: \(p(Q_{\text{month}}) \approx 99\% \)
 - 2020-2049: \(p(Q_{\text{month}}) \approx 98\% \)
 - 2070-2099: \(p(Q_{\text{month}}) \approx 90\% \)
Conclusions

- Primary control for droughts & water quality: flow
- Increase of ~17% in nitrate concentration during drought recovery
- Nitrate concentration expected to decrease due to CC (especially in summer)
- Phosphorus concentration controlled by flow (dilution)
- Phosphorus concentration expected to increase in summer due to CC, up to 0.5 mg/l in average (WFD limit: 0.1 mg/l)
THANK YOU!

G. Bussi, P. Whitehead, B. Guillod
School of Geography and the Environment, University of Oxford